
 
Abstract 
 

 Information Geometry is the differential geometric study of the manifold of 
probability models, and promises to be a unifying geometric framework for 
investigating statistical inference, information theory, machine learning, etc. Instead 
of using metric for measuring distances on such manifolds, these applications often 
use “divergence functions” for measuring proximity of two points (that do not 
impose symmetry and triangular inequality). Divergence functions are tied to 
generalized entropy and cross-entropy functions widely used in machine learning 
and information sciences. It turns out that divergence functions enjoy pleasant 
geometric properties – they induce what is called “statistical structure” on a 
manifold M: a Riemannian metric g together with a pair of torsion-free affine 
connections D, D*, such that D and D* are both Codazzi coupled to g while being 
conjugate to each other. We recently characterize holomorphicity of D, D* in the 
(para-)Hermitian setting, and show that statistical structures (with torsion-free D, 
D*) can be enhanced to Kahler or para-Kahler manifolds. The surprisingly rich 
geometric structures and properties of a statistical manifold open up the intriguing 
possibility of geometrizing statistical inference, information, and machine learning 
in string-theoretic languages.  
  


